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ABSTRACT

A direct derivation for the variation of the elliptic elements is
given, starting from the variational equation due to Poisson. The
method is suitable for any integral from elliptic motion and gives
the variation of an element by the use of a single equation.

FOREWORD

This work was undertaken in support of NRL Work Request No. SPASUR
WR-3-005. The purpose of this report is to give a simple method
for deriving the equations of variation of constants associated
with Keplerian motion.

INTRODUCTION

The well known method of variation of arbitrary constants for the
solution of a linear system of differential equations is usually
applied in celestial mechanics by choosing as the arbitrary constants
a set of elements of the Keplerian unperturbed motion. The present
memorandum shows how the same method can be used by taking the
arbitrary constants equal to the first integrals of the unperturbed
Keplerian motion. In some cases this leads to a simplification of
the formulae needed.

Integrals of Motion

We will consider first elliptic unperturbed motion, though the
method is suitable for any kind of motion under a central Newtonian
attraction.

1. Energy
h 1  v2.

2 r

2. Angular momentum

-0 1 . -*=2r xv

3. Integral of aricenter (Laplace)

p = e I

where i is a unit vector pointing toward pericenter, from the center
of attraction.
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4. Time of pericenter

n

where I is the mean anomaly.

POISSON' S VARIATIONAL FORMULA

Consider a system of differential equations reduced to its canonical
form:

x = fi(x,t) (i = 1, 2, ... , n) (i)

and let X(,t) = CO be a first integral of this system, called"unperturbed." We are using I for the Eet (x,, x2, ... , Xn).

Consider now the "perturbed" system:

x = fi(Xt) + gi(",t) (i = 1, 2, ... , n) (2)

The problem is to find the variation of CO due to the addition

of g1(xt). Suppose, therefore

X(X,t) = C(t)

From this

+ ([f(,t) + ga(i,t)]
at j 6xj

dC0 + gj( ,t)

dt 3 X

Therefore

C a= g(xpt)(3
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Application to Celestial Mechanics

The formula (3) is now applied to the system

rr . r + R (4)

where 1f is the disturbing force per unit mass. This system
corresponds to six scalar differential equations in the space
(x, y, z, vx, Vy, vZ). We know first integrals when .= O.

In the case where equation (4) applies,

C = q)(, v, t),

and

R + R+ R= grad.-v q. R.,
3vx x vy Y vz

so that

= R grad? p (Poisson). (5)

Relation (5) is quite general, C being any integral of the
unpertuxbed motion.

APPLICATIONS

1. Integral of energy

2 r

h=grd -;• R v •R
*Rv.

Now, in a Keplerian motion

h = - L-
2a

2a2
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I-

and therefore:

v R (6)

2. Angular momentum

.- I -. -* ..

C =r x v= Ck

with respect to an equatorial system:

(sin r sin I
k = cos sin I

Cos I

Therefore

Note that

k k 1 6k sin2 I

Thus we obtain

C k C

C Lk_ C sin2

C. 6 Ci
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Applying (5)

C=rxR

and then
0 -9 -49 -9 -9 -9@ -4

(r x R) • k = [r, R, k] (7)

C sin2 1 j )

= r R, k (9)

If we consider

C =4 a(l-e2)

then

1-e 2  C
e = - a -- C
2ae pae

Using (6) and (7), there results

e =.- a2(1-e2) v R- C r, R, (10)
pae

3. Integral of Pericenter

-9, -0e -9

Let us deduce p as function of r, v. Consider the quantity

Cxv
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Frm

v IL M.. r, r x v C
r 3

there results

r rPU

r r -3 r ._ v d 7 _d (Cx v)
r2dt dt

Therefore
-4 F - 4

v=- _- p, where # is a constant of integxation.
r

If k x i,then

Cx v i

r~(Hodograph)

Let us show that
-4 -4p= ei

- p x V, -+ (r x V- x ¢+
r r

S ) v v (r r (u)
r
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If p is constant, it may be evaluated at any point in the orbit,
and we will choose the pericenter. Then

as we had to prove.

using (11)

7= V) V- -(V 9
r

and applying Poisson's formula, it is easily found that

p-=2(. V-7 r'- r-. - RjV* - * v-- (12)

Now, in an equatorial system

cos w cos 0 + sin w sin 0 cos I

i = cos w sin + sin w cos n cos I

sin w sin I

Therefore

d =~ d e + e, t~+ e w + e2, I
dt L1

From p - i = G , we obtain (10) in a new form

(13)

and from (12)

=2( .* if) (r ) - * * r' i W~ vj **)(14)

From

:- P 4e (cos +

we deduce . .
Cos + . (15)
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Therefore

= Cos I RP k (
A 2C in2I p e

(r" (r

In resume, equations (6), (8), (9), (10) or (14), (16) give the

variational equations for a, j, I, e, w.

4. Time of Pericenter

- /2 s12
T=t- a (E- e sinE)

Applying Poisson's formula

1 pi/2 grad- [a12 (E- e sin E) R (17)

Now

grad- a - 2al v

grad .E = I .... 1 4 cos E [(hr2 + C2) h .v ].2rv

e sin E P e

grad3-e [(hr2 + C2 ) - h( •  ).P 2eId

and these relations enable us to compute $, from (17). Alternatively

we may compute & where a = I - nt.

SUNMARY

The equations for the variation of constants have been deduced in
a more direct way, without the necessity of coeputing Lagrange
brackets. On the other hand it seems that the present method
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is suitable for any integral and gives the direct variation of a
desired element by the use of a single equation. Furtheremore, it
gives the variations of the integrals of motion in an elegant
way. It is hoped that the present method simplifies the deduction
to a great extent.

The method is essentially equivalent to a method suggested to the
author by Dr. C. J. Cohen, where Poisson's variational equation is
applied directly to the elliptic elements, considered as functions
of position and velocity.
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